Quantitative Allele-Specific Expression and DNA Methylation Analysis of H19, IGF2 and IGF2R in the Human Placenta across Gestation Reveals H19 Imprinting Plasticity

نویسندگان

  • Sam Buckberry
  • Tina Bianco-Miotto
  • Stefan Hiendleder
  • Claire T. Roberts
چکیده

Imprinted genes play important roles in placental differentiation, growth and function, with profound effects on fetal development. In humans, H19 and IGF2 are imprinted, but imprinting of IGF2R remains controversial. The H19 non-coding RNA is a negative regulator of placental growth and altered placental imprinting of H19-IGF2 has been associated with pregnancy complications such as preeclampsia, which have been attributed to abnormal first trimester placentation. This suggests that changes in imprinting during the first trimester may precede aberrant placental morphogenesis. To better understand imprinting in the human placenta during early gestation, we quantified allele-specific expression for H19, IGF2 and IGF2R in first trimester (6-12 weeks gestation) and term placentae (37-42 weeks gestation) using pyrosequencing. Expression of IGF2R was biallelic, with a mean expression ratio of 49:51 (SD = 0.07), making transient imprinting unlikely. Expression from the repressed H19 alleles ranged from 1-25% and was higher (P<0.001) in first trimester (13.5 ± 8.2%) compared to term (3.4 ± 2.1%) placentae. Surprisingly, despite the known co-regulation of H19 and IGF2, little variation in expression of the repressed IGF2 alleles was observed (2.7 ± 2.0%). To identify regulatory regions that may be responsible for variation in H19 allelic expression, we quantified DNA methylation in the H19-IGF2 imprinting control region and H19 transcription start site (TSS). Unexpectedly, we found positive correlations (P<0.01) between DNA methylation levels and expression of the repressed H19 allele at 5 CpG's 2000 bp upstream of the H19 TSS. Additionally, DNA methylation was significantly higher (P<0.05) in first trimester compared with term placentae at 5 CpG's 39-523 bp upstream of the TSS, but was not correlated with H19 repressed allele expression. Our data suggest that variation in H19 imprinting may contribute to early programming of placental phenotype and illustrate the need for quantitative and robust methodologies to further elucidate the role of imprinted genes in normal and pathological placental development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-50: Embryo Loss Due to Epigenetic Anomaliesin the Male Germ Line: Role of Estrogen

Background: To investigate if aberrant methylation and expression of imprinted genes of the Igf2-H19 locus in the spermatozoa and embryos could be a paternal epigenetic factor involved in early embryo loss To elucidate the role of estrogen in acquisition of the imprinting at the Igf2-H19 locus during spermatogenesis Materials and Methods: Adult male rats of Holtzman strain were administered tam...

متن کامل

Modulation of imprinted gene network in placenta results in normal development of in vitro manipulated mouse embryos.

Genomic imprinting regulates the expression of a group of genes monoallelically expressed in a parent-of-origin specific manner. Allele-specific DNA methylation occurs at differentially methylated regions (DMRs) of these genes. We have previously shown that in vitro fertilization and embryo culture result in methylation defects at the imprinted H19-Igf2 locus at the blastocyst stage. The curren...

متن کامل

Inter- and Intra-Individual Variation in Allele-Specific DNA Methylation and Gene Expression in Children Conceived using Assisted Reproductive Technology

Epidemiological studies have reported a higher incidence of rare disorders involving imprinted genes among children conceived using assisted reproductive technology (ART), suggesting that ART procedures may be disruptive to imprinted gene methylation patterns. We examined intra- and inter-individual variation in DNA methylation at the differentially methylated regions (DMRs) of the IGF2/H19 and...

متن کامل

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

The effects of postovulatory aging of mouse oocytes on methylation and expression of imprinted genes at mid-term gestation.

Previous studies by others and ourselves have suggested that the methylation pattern of imprinted genes in oocytes is altered during postovulatory aging. The purpose of the current study was to evaluate the effects of postovulatory aging of mouse oocytes on methylation and expression of imprinted genes at the mid-gestation development stages. Proestrous females were artificially inseminated at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012